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Abstract. On the basis of the superposition principle for the optical anisotropy parameters
and the Jones calculus methods a phenomenological model is developed to interpret the optical
properties of absorbing, spatially modulated dielectric materials. The character of the normal
electromagnetic waves propagated in a uniaxial, weakly dichroic crystal for which the complex
gyration tensor is modulated with the simple square wave form is ascertained. The structure
with a perfect modulation wave and the unipolar structure are considered and should describe
the multidomain ferroelectric and incommensurately modulated phases. Specific crystal optical
effects are found which have no analogues in uniform materials. Proceeding from the normal
wave polarization the modulated crystal is shown to be equivalent to a low-symmetry biaxial
crystal. The origin of a non-zero eigenwave ellipticity is discussed in connection with the
problem of optical activity in macroscopically centrosymmetric incommensurate crystals of
A2BX4 group.

1. Introduction

In recent years the optical properties of multilayer solid state structures and superlattices
of different physical natures have attracted the permanent interest of researchers. When
compared with uniform objects, those structures often possess a wider set of elementary
excitations. Crystalline media characterized by a spatially modulated dielectric function,
i.e. layered dielectric crystals, incommensurately modulated and ordered multidomain
ferroelectric phases, may be an important example (see, e.g., Dijkstraet al 1992a, Sorge
and Hempel 1986, Vlokhet al 1992 and Yariv and Yeh 1984). It is known that the optical
anisotropy of the systems mentioned has some specific features. So, the modulation of
dielectric parameters notably affects the optical birefringence of crystals (Dijkstra 1991,
Fousek 1991). Despite the average macroscopic inversion symmetry of the A2BX4 group
incommensurate crystals, the existence in these materials of the controversial phenomenon
of optical activity has been reported by different workers (Dijkstraet al 1992b, Kobayashi
et al 1994, Kushniret al 1993, Ortegaet al 1992). The latter phenomenon described in
terms of a second-rank axial material tensor is forbidden by the point symmetry group
associated with the superspace group of the incommensurate phase and must therefore
be related to inhomogeneity, owing to the incommensurate modulation of the dielectric
medium on a semimacroscopic scale (Dijkstraet al 1992a, Kobayashi 1990, Kushnir and
Vlokh 1993). Even the simple model developed by Dijkstra (1991) points to an essential
difference in the crystal optics of homogeneous and spatially modulated crystals. Indeed,
the system of purely birefringent optical platelets which simulates the modulation, with the
square wave form, of the off-diagonal components of the real symmetric dielectric tensor

0953-8984/96/213921+12$19.50c© 1996 IOP Publishing Ltd 3921



3922 O S Kushnir

turns out to be optically active, for its normal light waves are the elliptically polarized
states.

It should be stressed that all the studies referred to above dealt with transparent crystals.
At the same time, the presence of anisotropic absorption (dichroism) is known to influence
markedly the process of transformation of polarized light by an optical medium and can
result in the appearance of some new effects impossible in transparent crystals (see e.g.
Pancharatnam 1957). From this point of view it should be interesting to test the crystal
optical properties of the modulated dichroic materials, at least in the most simple and
practical case of weak absorption.

In this paper a phenomenological approach to light propagation in a medium with a
periodic space-dependent dielectric tensor (Kushnir and Vlokh 1993) is applied to absorbing
crystals, to reveal the character of normal light waves in the latter. The preliminary results
have been published elsewhere (Vlokh and Kushnir 1995). In section 2 the typical patterns
for normal wave polarization in dielectric crystals are discussed, and the working methods
and approximations are described. Sections 3 and 4 deal with the normal electromagnetic
modes in the uniform and the modulated weakly dichroic uniaxial crystals. Conclusions are
drawn in section 5.

2. Normal electromagnetic waves in crystals

The effect of the crystalline medium on the plane monochromatic electromagnetic wave can
be understood in such a manner that the incident wave is resolved into two normal modes
(eigenmodes) characteristic for a given type of optical anisotropy in crystal. These modes,
which alone can propagate through the medium without alteration of their polarization and
with definite phase velocity and decay, specify well the electromagnetic properties of that
medium. The modes are defined completely by the polarization state, together with the
refractive indicesn and the absorption coefficientsκ. If the polarized light passes through
isotropic material, its polarization remains unchanged, i.e. each wave in such a material
can be treated as normal. In anisotropic materials, several typical patterns for eigenwave
polarization have to be distinguished, depending on the crystal optical effects available and
the light propagation direction.

In uniaxial non-absorbing crystals the character of the eigenmode polarization is the
simplest. When the ordinary (linear) birefringence is present, the eigenmodes are represented
by the orthogonal states linearly polarized along the principal axes of the optical indicatrix.
In optically active (circularly birefringent) material the modes become circularly polarized
with the opposite signs of rotation. That is why, according to the usual approximation, the
waves propagating in the elliptically birefringent crystal with coexisting birefringence and
optical activity can be regarded as orthogonal elliptical states, their numerical ellipticities
being equal and the signs opposite (figure 1(a)):

tan(2εe1,2) = ± 2k

1 − k2
= ±1nc

1nl

(1)

whereεei denotes the ellipticity angle for the eigenwave (the ratio of minor to major semiaxes
of the polarization ellipsis), and1nc and1nl are the circular and the linear birefringences,
respectively. Except for very close to the optical axis direction, the eigenwave ellipticity is
small because the optical activity is overwhelmed by a dominating birefringence effect:

εe1,2 = ±k = ± 1nc

21nl

. (2)
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Qualitatively the same pattern occurs in a crystal where pure absorption anisotropy (the
elliptical dichroism) is present (Azzam and Bashara 1988, Vlokh and Kushnir 1996). The
only peculiarity is that the normal waves suffer different absorptions but have the same
velocities. In particular, we have linear or circular polarization of the waves in linearly or
circularly dichroic crystals.

Figure 1. Typical patterns for the normal wave polarization in (a) transparent, (b) dichroic
uniaxial, (c) birefringent linearly dichroic biaxial and (d) dichroic biaxial crystals.x, y are the
principal axes of the optical indicatrix. Details are discussed in the text.

The situation becomes more complicated if the crystal possesses anisotropy of both
the refractive and the absorption properties. In the most general case of an elliptically
birefringent, elliptically dichroic biaxial crystal in which the principal directions of
birefringence and dichroism do not coincide, the geometrical forms of the eigenwave
polarization ellipses do not have a simple relation to one another as shown by Pancharatnam
(1957). Namely, their major axes are not crossed, being inclined at different angles to the
principal axes of refraction; the ellipticity moduli are not equal whereas their handedness
can be either the same or the opposite (figure 1(d)). In some approximations, results have
been obtained for a number of particular simpler cases (see, e.g., Konstantinovaet al 1983,
Pancharatnam 1955, 1957). For example, the normal waves in an absorbing uniaxial crystal
have the same numerical ellipticities described by opposite signs (Pancharatnam 1957). The
(usually weak) effect of dichroism is known to manifest itself in the non-orthogonality of
the waves as displayed in figure 1(b).

A prominent effect can exist in biaxial crystals with the superposed birefringence and
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linear dichroism (Pancharatnam 1955). The eigenmodes turn out to be similarly rotating
elliptical vibrations with equal ellipticities which may be written as (Okorochkovet al 1984,
Pancharatnam 1957)

tan(2εe1,2) = 2p

1 − p2
= 1κl

1nl

sin(2ϕ) (3)

where1κl is the linear dichroism andϕ the acute angle between the principal planes of
birefringence and dichroism. Under the condition of a relatively small amount of dichroism,
e.g. in the directions not too near the optical axes, the major axes of the ellipses are almost
parallel to the principal planes of optical indicatrix (figure 1(c)) and

εe1,2 = p = 1κl

21nl

sin(2ϕ). (4)

If, additionally, optical activity is present, it also contributes to the normal wave ellipticities,
modifying them to

εe1,2 = ±k + p. (5)

Now we shall concentrate on clarifying the main features of the normal waves imposed
by a combined effect of absorption anisotropy and a periodic variation in the dielectric
parameters in the crystal. It should be difficult to solve the problem of light propagation
in a medium characterized by several coexisting crystal optical effects from the standpoint
of exact electromagnetic theory. In view of the complexity of the subject, one has to make
some reasonable simplifying assumptions. First, we shall restrict ourselves to considering
the uniaxial crystals. Second, in the most practical cases the optical anisotropy is small, i.e.
mathematically speaking the differences between the refractive and absorption coefficients
are much less than the mean values of the latter. Then we can neglect the mutual influence
of the elementary optical effects (birefringence, optical activity and dichroism) and use a
superposition principle (Nye 1985). Note that the majority of the results discussed above
have been derived within the framework of such an approach. We adopt the principle in
its most general formulation as postulating that the anisotropy components for linearly and
circularly polarized light waves are composed together according to a vectorial law (see
also Jones 1948):

10 =
√

(1l + iδl)2 + (1c + iδc)2 (6)

where10 is the (complex) amplitude-and-phase difference for the normal waves,1l, 1c, δl

and δc are the partial contributions to10 of the birefringence, optical activity, linear and
circular dichroism, respectively:

1l = γ1nl 1c = γ1nc δl = γ1κl δc = γ1κc γ = 2πd/λ (7)

with d the thickness of crystal andλ the wavelength in vacuum.
From the two convenient calculation methods based on employing the superposition

principle, the Poincaré sphere and the Jones calculus (Azzam and Bashara 1988), we choose
hereafter the algebraic matrix method as more powerful when applied to inhomogeneous
media. With this approach the characteristics of the normal waves can be easily determined
from the eigenvectors and eigenvalues of the appropriate Jones matrices.

3. Homogeneous, weakly dichroic crystal

As a first step, let us consider the optical properties of a homogeneous (non-modulated)
dichroic crystal. In the coordinate system associated with the principal axes, the general
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normalized Jones matrix of a uniaxial absorbing crystal may be written as follows (Jones
1948):

T =
[

cos
(

10
2

) − i cos(2β) sin
(

10
2

) − sin(2β) sin
(

10
2

)
sin(2β) sin

(
10
2

)
cos

(
10
2

) + i cos(2β) sin
(

10
2

) ]
(8)

where

sin(2β) = 1c + iδc

10
cos(2β) = 1l + iδl

10
. (9)

A common situation is that the anisotropy for the linearly polarized waves exceeds
appreciably that for the circularly polarized waves. This is valid unless the wave normal is
very close to the optical axis direction, in which case a special analysis should be necessary.
Otherwise we may disregard the contributions of1c and δc to 10. Using further the
condition of weakness of the dichroism fulfilled for a large number of materials, we have
from (9)

sin(2β) ≈ 1c + iδc

1l

cos(2β) ≈ 1. (10)

Following Moxon and Renshaw (1990) it is convenient now to introduce a new set
of anisotropy parameters1, E, k andk′ describing the elementary optical effects (see also
equation (2)):

1 = γ1nl E = γ1κl k′ = 1κc

21nl

. (11)

Of these four parameters,E, k and k′ are small with respect to unity, and we shall omit
the terms of orderE2, k2 andk′2 in all further calculations. Inserting (11) in (8) gives the
resulting Jones matrix of the homogeneous, weakly dichroic uniaxial crystal:

TH =
[ (

1 + E
2

)
exp

(−i 1
2

) −2(k + ik′)
[
sin

(
1
2

) + i E
2 cos

(
1
2

)]
2(k + ik′)

[
sin

(
1
2

) + i E
2 cos

(
1
2

)] (
1 − E

2

)
exp

(
i 1

2

) ]
. (12)

Note that (12) may be derived from the matrix of a transparent crystal (Vlokhet al 1990)
with the formal replacement1 → 1 + iE andk → k + ik′.

Complex characteristic values of Jones matrix (12) testify that the crystal is to be
classified as a mixed amplitude-and-phase retardation plate, for which the phase difference1

is defined by the birefringence alone and the amplitude differenceE by the linear dichroism
alone. The eigenvectors of (12) specifying the normal wave polarization are characterized
by the polarization parameters (Azzam and Bashara 1988) given by

ξH
e1 = i(k + ik′) ξH

e2 = [i(k + ik′)]−1. (13)

This proves that the normal waves are not orthogonal:

ξH
e1

(
ξH
e2

)∗ = −1 − 2ik′

k
. (14)

The effect is defined by a small ratiok/k′.
A noteworthy fact is the absence of any contribution fromE to the polarization

state of the eigenwaves, contrary to the views of Moxon and Renshaw (1990). If, in
particular, the crystal manifests only linear dichroism the eigenwaves are orthogonal when
the approximation linear in1cδl � 1 is adopted (Kushnir and Vlokh 1995).

Checking the eigenvectors of (12) yields

χH
e1 = −k′ χH

e2 = 1
2π + k′ εH

e1 = k εH
e2 = −k (15)
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for the azimuths (χe) and the ellipticities (εe) of the normal waves. The major axes of
the polarization ellipses appear to be separated by the angles1

2π + 2|k′| or 1
2π − 2|k′|,

depending on the sign ofk′; each of these axes is rotated by∓k′ compared with those
of the transparent crystal, while the ellipticities are equal but opposite in sign. This
fits completely into the pattern displayed in figure 1(b), in accordance with the general
results obtained by Forsterling (quoted by Szivessy 1928) from the exact electromagnetic
theory of light propagation in the uniaxial crystals. Note that, when circular dichroism
is absent, the azimuthsχei define the angular positions of the principal axes of optical
indicatrix.

Finally, we examine the normal wave polarization in a weakly anisotropic direction of
optical axis. Then symmetry demands that both the birefringence and the linear dichorism
disappear, and equation (8) transforms to

TH =
[

cos
(

1c

2

) − i δc

2 sin
(

1c

2

) − sin
(

1c

2

) − i δc

2 cos
(

1c

2

)
sin

(
1c

2

) + i δc

2 cos
(

1c

2

)
cos

(
1c

2

) − i δc

2 sin
(

1c

2

) ]
. (16)

On the basis of (16), one can arrive at the conclusion that the normal waves are represented
by the two orthogonal circularly polarized states, a partial case of the situation illustrated
in figure 1(a).

4. The Jones model for the modulated weakly dichroic crystal

4.1. Polarization of normal waves

Let the basic structure of the crystal be neither optically active nor circularly dichroic.
However, the latter effects can exist locally owing to a periodic perturbation of the
dielectric tensor by the modulation, provided that the antisymmetric part of this tensor
becomes non-zero. In other words, we suppose now that the optical activityk and circular
dichroism k′ are spatially modulated in a manner shown in figure 2. From symmetry
considerations this should take place when, for example, the crystal has a phase transition
from a centrosymmetric parent phase to a ferroelectric phase. Another example may
be the transitions to incommensurately modulated phases in the A2BX4 group crystals
(Cummins 1990). Following Dijkstra (1991) and Kushnir and Vlokh (1993) we shall
consider analytically the simplest square shape of the modulation wave. Then the crystal
can be regarded as a layered optical structure in which layers have alternatingk and k′

signs (see figure 2). The two neighbouring layers together correspond to a spatial period
of the modulation wave. We assume this period to be sufficiently large to allow for the
interpretation in terms of macroscopic dielectric parameters but much less than the crystal
dimensions. The above conditions are satisfied for both the multidomain ferroelectric and
the incommensurate phases.

The layered structure depicted in figure 2 is unipolar as is often with the real multidomain
phases. If the layers are identical (δ1 = δ2 = δ), we have a perfectly periodic modulated
structure. Under the conditions discussed in section 3, each of the (optically uniform)
constituent layers can be described by the basic Jones matrix (12) in which the parameters1

andE should be replaced by the phase retardationsδi and the linear dichroismsei in separate
layers.

The Jones matrixTM of the entire structure is given by

TM = [TH (δ2, e2, −k, −k′)TH (δ1, e1, k, k′)]N (17)

with N the number of the modulation periods fitted in the crystal length. It should be
stressed that the Jones matrices of all the phase retardation plates and the partial polarizers
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Figure 2. Schematic representation of the modulated crystal with a square wave shape (see
text). The modulated optical activityk and circular dichroismk′ have opposite signs in the
shaded and unshaded optical layers.δ1 andδ2 are the phase retardations in the layers.

are unimodular, including those employed in the present work. This permits us to apply the
Chebyshev formula for theN th power of a matrix (Yariv and Yeh 1984) in calculations of
(17) which results in

TM =
[ (

1 + E
2

)
exp

(−i 1
2

)
2k+ik′

s+
(s− + 2is1s2)

[
sin

(
1
2

) + i E
2 cos

(
1
2

)]
−2k+ik′

s+
(s− − 2is1s2)

[
sin

(
1
2

) + i E
2 cos

(
1
2

)](
1 − E

2

)
exp

(
i 1

2

) ]
. (18)

Here the following notation is introduced:

1 = N(δ1 + δ2) E = N(e1 + e2)

si = sin

(
δi

2

)
s+ = sin

(
δ1 + δ2

2

)
s− = sin

(
δ1 − δ2

2

)
. (19)

Using the matrix (18) we are able to find the changes in the character of normal light
waves induced by the modulation. First of all, note that in the approximation linear ink

andk′ the characteristic values of (18) coincide with those of (12), i.e. the observed phase
retardation1ob and the observed linear dichroismEob of the modulated crystal are equal
to the corresponding values of the homogeneous sample with the same geometry:

1ob = 1 Eob = E. (20)

The influence of spatial inhomogeneity of the medium on the birefringence and linear
dichroism can be shown to be quadratic in the modulated parameters, in agreement with
the conclusions for incommensurate crystals (Fousek 1991).

The polarization parameters of the normal waves are

ξM
e1 = is−1

+ (k + ik′)(s− + 2is1s2) ξM
e2 = [is−1

+ (k + ik′)(s− − 2is1s2)]
−1. (21)
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From (21) it follows that the waves are not orthogonal and, moreover, the relation (14)
formally holds. However, we have, instead of (15),

χM
e1 = −s−1

+ (2ks1s2 + k′s−)

χM
e2 = 1

2π − s−1
+ (2ks1s2 − k′s−)

(22)

and

εM
e1 = s−1

+ (ks− − 2k′s1s2)

εM
e2 = s−1

+ (−ks− − 2k′s1s2).
(23)

Taking δ1 = δ2 = δ in (22) and (23), one can obtain the relations for a limiting case of a
perfect non-unipolar structure. Finally, we pass to (15) for the enantiomorphous uniform
material by putting eithers1 = 0 or s2 = 0, together withs−/s+ = 1.

Essential difficulties arise in the analysis of the eigenwave polarization in a general case
when all the anisotropy parameters are comparable in magnitude. For simplicity, we shall
therefore consider only the light propagation direction parallel to the optical axis, similarly
to section 3. Performing the calculations with the basic Jones matrixTH (equation (16)) in
the manner described above yields the resulting matrix for the modulated material, where
the values1c and δc are replaced by the differences in the corresponding parameters
characteristic for the neighbouring layers:1l1

c − 1l2
c andδl1

c − δl2
c . As a result, the perfect

modulated structure (1l1
c = 1l2

c ; δl1
c = δl2

c ) appears to be optically isotropic, while the
unipolar structure has a right-circular vibration and a left-circular vibration as the normal
modes. This can be illustrated again by figure 1(a).

4.2. Discussion of results

As seen from (22) and (23), polarization of the normal waves in the weakly absorbing
modulated crystal cannot in general be interpreted within any of the simple patterns in
figures 1(a)–1(c). In the absence of circular dichroism the waves become orthogonal.
However, even in this case the optical properties of the medium differ essentially from those
of the uniform crystal whereχH

e1 = 0 andχH
e2 = 1

2π . Namely, the modulation causes a
rotation of the principal axes of optical indicatrix associated with the term 2s−1

+ ks1s2 in (22).
A noteworthy fact is that the basic structure belongs to a high-symmetry group corresponding
to the uniaxial crystal, for which any changes in the optical indicatrix orientation should be
forbidden. Thus the given symmetry breaking has to be ascribed to structural inhomogeneity
of the modulated crystal. The optical indicatrix rotation is dependent on the temperature,
wavelength, etc, and may therefore be detected experimentally, e.g. in the polarimetric
studies on incommensurate materials (Kushniret al 1993). The magnitude of the effect is
equal tok tan(δ/2) in the perfectly modulated crystal (Kushnir and Vlokh 1993).

An additional effect arises when the structure acquires unipolarity: non-orthogonality
of the major axes of the eigenwave polarization ellipses. It is determined by the term
±2|s−1

+ k′s−| (cf the homogeneous dichroic crystal (section 3)).
According to a common belief, a non-zero eigenwave ellipticity is to be ascribed to the

optical activity effect. Then the analysis of (23) proves the optical activity in the dichroic
modulated materials to have some mutual features with that in transparent materials (Kushnir
and Vlokh 1993). Specifically, a non-zero eigenwave ellipticity results from unipolarity of
the structure. However, another contribution is also present in (23) originating from the
circular dichroismk′ in the optical layers. This is the only effect characteristic of the perfect
structure, although its size is relatively small with respect to the effect arising from optical
activity in the layers. We recall that the spatial average of the perfect structure has inversion
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symmetry. The effect mentioned should therefore be related to a combined influence of the
modulation of dielectric parameters and the absorption anisotropy.

Of particular interest is comparison of the ellipticities of the two normal waves. In both
the uniaxial non-dichroic homogeneous crystal (equation (1)) and the modulated crystal
(Kushnir and Vlokh 1993) the conditionεe2 = −εe1 holds, as it also does in a weakly
dichroic homogeneous crystal (equation (15)). For the transparent modulated crystal the
conclusion may be arrived at, for example, by checking the behaviour ofεe (Kushnir and
Vlokh 1993) when the crystal is rotated by the angle1

2π around the light propagation
direction. Since the principal axes are then replaced, we haveεe1 → εe2, δi → −δi ,
1 → −1 andk → −k. In the absorbing modulated crystal (see (23)),

εM
e1 = εOA + εCD

εM
e2 = −εOA + εCD

(24)

where εOA and εCD denote the terms withk and k′, respectively. This contrasts
drastically with the usual situation in uniaxial materials but resembles that described by
(5). Specifically,εM

e2 = εM
e1 in the perfectly modulated structure, as in a biaxial birefringent,

linearly dichroic crystal (figure 1(c)). Although having their major axes crossed, the normal
elliptical vibrations are rendered non-orthogonal by the fact that they are of the same
handedness. Note that here the effect is not concerned with different orientations of the
principal axes of dielectric and conductivity tensors (Pancharatnam 1955) but is evoked by
the modulation.

It must be stressed that the given effect of circular dichroism is quite new. In all other
cases known, the circular dichroism gave either opposite signs of the eigenwave ellipticities
(optically active crystal (figure 1(a))) or non-orthogonality of their major axes (birefringent
crystal (see, e.g. Konstantinovaet al 1976, Moxon and Renshaw 1990)).

The nature of the crystal optical effects in the modulated medium can be elucidated more
by considering their behaviour under the symmetry operation of time inversion (Kushnir and
Vlokh 1993). Thenk → −k andδ1 ↔ δ2 should be put in (22) and (23). As a result,εOA

remains invariant under the operation, unlike the termεCD. In a hypothetical crystal with
no birefringence and no linear dichroism, the behaviour ofεCD should lead to an alteration
in the sign of the measured optical rotatory power when the light passes through the sample
in the opposite direction, similarly to the magneto-optical Faraday effect. Qualitatively
the same may be said of the birefringent, linearly dichroic crystal sections, although there
is no pure optical rotation in the latter case. However, it is known (Konstantinovaet al
1969) that, when birefringence is present in the crystal, the sign of the optical activity may
be determined from the thickness-dependent variations in the emergent light polarization
azimuthχ . If the incident light is linearly polarized in the principal plane, we have for a
transparent crystal (Konstantinovaet al 1969)

χ = k sin1 (25)

with k the normal wave ellipticity taken from (2). A similar relation for the weakly dichroic
modulated crystal may be derived using (18):

χ = s−1
+ (1 − E){k[s− sin1 − 2s1s2(1 + E − cos1)]

−k′[s−(1 + E − cos1) + 2s1s2 sin1]}. (26)

As seen from (26), all the terms available in (22) and (23) contribute to the emergent light
polarization. Under the time inversion operation the contribution toχ originating fromεCD

changes its sign, thus testifying that the normal wave ellipticityεCD in (23) in no case
can be explained as the optical activity effect. Moreover the above-mentioned methods of
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Konstantinovaet al (1969) for determining the optical activity sign should not be in general
applicable to the crystals under consideration.

On the whole, despite the fact that a non-zero ellipticity of the waves propagating
through the dichroic modulated medium can be easily revealed within the model developed,
it is much more difficult to interpret unambiguously the effects found there. All of them are
a distinct result of the modulation being produced by the local optical activityk or circular
dichroismk′ in the optical layers. Nevertheless the effects cannot be simply identified with
the ‘optical activity’ or ‘circular dichroism’ for that reason only. A good illustration may be
the term in equation (22) proportional toks1s2 which, surprisingly, gives rise to a rotation
of the optical indicatrix. The most consistent definition of the optical activity proceeds from
a material equation describing the light propagation in the dielectric medium (Agranovich
and Ginzburg 1979). This way, however, seems to be clear enough only in the simple case
of uniform non-absorbing media and gives little when applied to inhomogeneous materials.
As shown above, the spatially averaged complex gyration tensor in the dichroic modulated
crystal may be zero, but the normal waves become elliptical owing to ‘spatial dispersion’
of this tensor, unlike the crystal optics of the uniform transparent crystals. Another apt
example is reported by Dijkstra (1991): the ‘optical activity’ resulting from modulation of
the purely symmetric dielectric tensor. This can be understood in terms of local deviations
of the optical indicatrix axes. Regarding the material equations, in both cases quoted, the
nature of the ‘optical activity’ is quite different from that of the uniform crystals. Hence
the effects described by (23) may be referred to as the optical activity only conventionally,
in view of the fact that they cause elliptical polarization of the normal waves.

5. Concluding remarks

In this work the crystal optical effects in the inhomogeneous absorbing medium are discussed
on the basis of the well known superposition principle for the optical anisotropy parameters
and the Jones calculus methods. A visual Jones model is developed for the dichroic crystal
with a modulated dielectric function. We considered a relatively simple and practical case
of a uniaxial, weakly dichroic material, assuming that the antisymmetric part of its dielectric
tensor was modulated with a square wave shape. Although the basic structure is neither
optically active nor circularly dichroic, the modulated structure formed by local periodic
perturbations of the complex gyration tensor reveals a number of unexpected effects which
manifest themselves in the polarization of the normal waves propagating in the crystal.
Those are the optical indicatrix rotation, the non-orthogonality of polarization ellipses of
the normal waves and their elliptical polarization caused by the modulation, i.e. both local
optical activity and circular dichroism. In relation to their origin, at least the last two
effects have to be qualified as quite new and cannot be interpreted in terms of the usual
crystal optical phenomena such as the optical activity and circular dichroism occurring in
the uniform crystals. One can thus see that the optics of inhomogeneous crystals have
essential differences from that of uniform materials. The dichroic crystals represent the
most prominent example. In fact, the symmetry of the uniaxial, weakly dichroic crystal is
broken due to the modulation and, in accordance with the character of the normal waves, it
becomes optically equivalent to an absorbing biaxial crystal.

A key point is that the effects imposed by the modulation in fact disappear when
light propagates along the optical axis. So, the structure with the perfect modulation
wave has similarly rotating elliptically polarized normal modes when birefringence and
linear dichroism are present. However, the eigenmodes do not transform into circularly
polarized states with the same handedness on approaching the optical axis direction, but the



Normal waves in absorbing modulated crystals 3931

structure suddenly becomes optically isotropic. This discontinuity shows the important role
of anisotropy for the linearly polarized waves in the existence of the effects described by
the eigenmode ellipticityεCD. The origins of the optical activity in transparent modulated
crystals are also different in the two alternative cases considered, as found by Kushnir and
Vlokh (1993). Furthermore, no optical activity that can be related to structural modulation
has been reported experimentally up to now for the weakly anisotropic directions of optical
axes in the incommensurate crystals of the A2BX4 group. In our view, the latter point
must be taken into account for proper understanding of the problem of optical activity in
incommensurate phases. We have therefore to emphasize that the reason for the peculiar
crystal optical phenomena in the modulated medium is a combined effect of the modulation
and ‘mixing’ anisotropy for linearly and circularly polarized light waves taking place for
the wave normal far from the optical axis directions.

The results of the present paper should explain, first of all, the optical properties of the
multidomain ferroelectric and the incommensurate phases in the soliton regime. However,
using the conclusions of study by Kushnir and Vlokh (1993), we may assume the main
results to be correct also in the plane wave modulation regime occurring immediately
below the parent-to-incommensurate phase transition. The important questions remaining
within the model and disregarded here are its sensitivity to the boundary conditions for the
modulation wave and the size of the optical effects, the points considered in more detail
by Dijkstra (1991), Dijkstraet al (1992a) and Kushnir and Vlokh (1993). To compare the
theory with experiments, further experimental investigations of the optical anisotropy in
absorbing dielectrics are necessary.
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